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Abstract In this paper, it is proved a very general well-posedness result for a class of
constrained minimization problems of which the following is a particular case: Let X be a
Hausdorff topological space and let J, ®: X — R be two non-constant functions such that, for
each A € R, the function J 4+ A ® has sequentially compact sub-level sets and admits a unique
global minimum in X. Then, for each r €]infx ®, supy ®[, the restriction of J to @1 (r)
has a unique global minimum, say %,, toward which every minimizing sequence converges.
Moreover, the functions r — X, and r — J(X,) are continuous in ]infx ®, supy P[.

Keywords Constrained minimization problem - Well-posedness - Minimax - Saddle-point

Here and in the sequel, X is a Hausdorff topological space, J, ® are two real-valued functions
defined in X, and a, b are two numbers in [—o0, +00], with a < b.

If a € R (resp. b € R), we denote by M, (resp. My) the set of all global minima of the
function J + a® (resp. J + b®), while if a = —oo (resp. b = +00), M, (resp. M}) stands
for the empty set. We adopt the conventions inf § = +o00, sup ¥ = —oo. We also set

o :=max qinf ®,supd ¢,
X M)

B = min [sup ®, inf Cb] .
X Ma

Note that, by Proposition 1 below, one has o < .
As usual, given a function f: X — R and a set C C X, we say that the problem of
minimizing f over C is well-posed if the following two conditions hold:
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e the restriction of f to C has a unique global minimum, say X;
e every sequence {x,} in C such that lim,_, o, f(x,) = infc f, converges to x.

A set of the type {x € X: f(x) < r}is said to be a sub-level set of f. Clearly, when the
sub-level sets of f are sequentially compact, the problem of minimizing f over a sequentially
closed set C is well-posed if and only if f|c has a unique global minimum.

The aim of the present paper is to establish the following result:

Theorem 1 Assume that « < B and that, for each A €la, b|, the function J + L ® has
sequentially compact sub-level sets and admits a unique global minimum in X.
Then, for each r €la, B|, the problem of minimizing J over ®~'(r) is well-posed.
Moreover, if we denote by X, the unique global minimum of Jio-14)(r €la, BI), the func-
tions r — X, and r — J(X,) are continuous in lc, Bl.

Theorem 1 should be regarded as the definitive abstract result coming out from the sad-
dle-point method developed in Refs. [4—7], in specific settings.
The main tool used to prove Theorem 1 is provided by the following mini—max result:

Theorem 2 Let I C R be an interval and f a real-valued function defined in X x 1. Assume
that there exist a number p* > sup; infy f and a point A € I such that, for each p < p*,
the following conditions hold:

(i) the set {} € I: f(x, L) > p}is connected for all x € X;
(ii) the set {x € X: f(x,A) < p} is sequentially closed for all » € I and sequentially
compact for A = e
(iii) for each compact interval T C I for which supy infx f < p, there exists a continuous
function ¢: T — X such that f(e(X),A) < pforallr e T.
Then, one has

sup inf f(x,A) = mf sup f(x, A).
rel ¥€X X el

Proof We strictly follow the proof of Theorem 2 of [3]. First, fix a non-decreasing sequence
{I,,} of compact sub-intervals of I, with A € Iy, such that U,en1, = I. Now, fix n € N. We
claim that

sup inf f(x,A) = 1nf sup f(x, A). (1)
rel, XX X yel,

Arguing by contradiction, suppose that

sup inf f(x,A) < mf sup f(x, A).
rel, ¥€X X el

Fix p satisfying

rel, X€X "xeX rely,

sup inf f(x,A) <p < mln’ , inf sup f(x, k)]

Set
S={(x,2) e X xI: f(x,2) < p}
as well as, foreach A € I,,,

S*={xeX:(x,1) €S
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Since sup; infx f < p, one has §* # ¢ forall A € I,. Let I, = [ay, b,]. Put

A=1(x, M) eS:A<b,, sup f(x,s)>p
s€ln.by]

and

B:l(x,k)eS:k>an, sup f(x,s)>,o].

s€lan, Al

Observe that S% x {a,} € A and S’ x {b,} C B. Indeed, let x; € $% and x, € S
Since p < infx sup; f, there are ¢, s € I, such that min{f (xy, 1), f(x2,5)} > p. Since
sup{ f(x1, an), f(x2,b,)} < p,itfollowsthatr > a, ands < b,.Consequently, (x1, a,) € A
and (x», b,) € B. Furthermore, observe that if (xg, Ag) € A and if & €]\g, b, ] is such that
f(x0, ) > p, then, in view of (ii), the set

(fx € X2 f(x, ) > p} x [an, nD NS

is sequentially open in S, contains (xg, Ag) and is contained in A. In other words, A is
sequentially open in S. Analogously, it is seen that B is sequentially open in S. We now
prove that S = A U B. Indeed, let (x, 1) € S\ A. We have seen above that S x {a,} C A,
and so A > a,. If L = b, the fact that (x, 1) € B has been likewise proved above. Sup-
pose A < b,. Thus, we have SUDseln b, ] f(x,s) < p. From this, it clearly follows that
SUPse[a, 1 J (X, 8) > p (note that f(x,2) < p), and so (x, A) € B. Furthermore, we have
AN B = (. Indeed, if (x1, A1) € AN B, there would be ¢1, s; € I,, with#; < A; < s1, such
that min{ f (x1, t1), f(x1,51)} > p. By (i), the set {s € I: f(x1,s) > p} is an interval, and
so we would have f(xy, A1) > p, against the fact that (x1, A1) € S. Now, in view of (iii),
consider a continuous function ¢: I, — X such that

flo@),2) <p

forall A € I,. Let h: I, — X x I, be defined by setting

h(2) = (@(M), 1)

for all A € I,,. Since h is continuous, the set h(1,) is sequentially connected ([1], Theorem
2.2). But, having in mind that 2 (7,) € S and that 4 (/,,) meets both A and B (since h(a,) € A
and h(b,) € B), the properties of A, B proved above would imply that /(7,,) is sequentially
disconnected, a contradiction. So, (1) holds. Finally, let us prove the theorem. Again arguing
by contradiction, suppose that

sup inf f(x,A) < inf sup f(x, ).
X xe€X )eg

rel X€
Choose r satisfying
sup inf f(x,X) <r < min [,o*, inf sup f(x,k)] .
rel X€X xeX )eg

For each n € N, put

Cp=qxeX:sup f(x,A) <r¢.
rel,
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Note that C,, # @. Indeed, otherwise, we would have

r < inf sup f(x,A) = sup 1nf f(x,2) <sup mf fx,2).
xeX sel, rel, X€ rel X€

Consequently, {C,} is a non-increasing sequence of non-empty sequentially closed subsets
of the sequentially compact set {x € X: f(x,A) < p*}. Therefore, one has NyeNnCp, # 9.
Let x* € N,,eNnCy,. Then, one has

sup f(x*, 1) =sup sup f(x*, 1) <r

rel neN Ael,
and so
inf sup f(x, 1) <r,
xeX )ef
a contradiction. The proof is complete. O

We will also use the following proposition.

Proposition 1 ([4], Proposition 1) Let Y be a non-empty set, f,g: Y — R two functions,
and X, | two real numbers, with .. < 1. Let 3, be a global minimum of the function f + \g
and let 3, be a global minimum of the function f + ug.

Then, one has

g(Pu) < g(n).
If either ¥, or y,, is strict and 3, # ., then
8w < g

Proof of Theorem 1 First, for each A €]a, b[, denote by ¥, the unique global minimum in
X of J + A®. Let us prove that the function A — ¥, is continuous in Ja, b[. To this end,
fix A* €]a, b[. Let {)A,} be any sequence in ]a, b[ converging to A* and let [c, d] Cla, b[ be
a compact interval containing {A,}. Fix p > sup,ninfrex(J(x) + A, P(x)). Clearly, we
have

U rex: /e +r0w) < p)
Ar€le,d]

CxeX:JXx)+cPx) <plU{x e X:J(x)+dd(x) < p}.

From this, due to the choice of p, we infer that the sequence {3, } is contained in the set on the
right-hand side which is clearly sequentially compact. Hence, there is a subsequence { ﬁ;\nk }
converging to some y* € X. Taking into account that the sequence {GD()A);\nk )} is bounded (by
Proposition 1) and that the function J + A*® is sequentially lower semicontinuous, for each
x € X, we then have

JOF) + A (") < liminf(J Py, ) + 2Py, )
k—o00 K K
= liminf(J (33, ) + An, ®Gr,,) + A = 1, )@ (G2, )
k—00
= liminf(J (5, ) + dny ®(F2,,) < lim (J(x) + Ay, @ (x))
k—00 k— 00

=J(x)+A2"d(x)
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Hence y* is the global minimum of J + A*®, that is y* = y;+, which shows the continuity
of A — ¥, at A*. Now, fix r €]a, B[ and consider the function f: X x R — R defined by

fx,2) =J&x) +M(P(x) —r)

for all (x, A) € X x R. Clearly, the restriction of the function f to X x]a, b[ satisfies all the
assumptions of Theorem 2. In particular, (ii{) is satisfied taking ¢ (1) = 3. Consequently,
we have

sup inf (J(x) +A(P(x) —r)) = 1nf sup (J(x) +A(P(x) —71)). 2)
L€la, b[xE AE la,b[
Note that
sup inf f(x,X) < sup inf f(x,})
rela,b[ ¥€X rela,b)NR XE€X
<inf sup f(x,A)=inf sup f(x,A)
*€X rela,bINR *€X ) ela,bl

and so from (2) it follows

sup inf (J(x) +X(P(x) —r)) = inf sup (J(x)+A(D(x)—r)). 3)
réela,bINR ¥€X x€X )ela,b]NR

Now, observe that the function inf,cx f(x, -) is upper semicontinuous in [a, b] N R and
that

lim inf f(x,A) = —

A—>+ooxeX

if b = 400 (since r > infy @), and

lim inf f(x,A) =

A—>—oc0oxeX

if a = —oo (since r < supy ®). From this, it clearly follows that there exists ir € la,b]NR
such that

inf f(x,A,) = sup inf f(x,2).
reX rela,bINR ¥ E€X

Since

sup  f(x,A)= sup f(x,})
Arela,b]NR Ar€la,b[

forall x € X, the sub-level sets of the function sup; ¢, p1nr S (-, ) are sequentially compact.
Hence, there exists X, € X such that

sup  f(x,A) = inf sup f(x,A).
r€la,bINR YeX ela,b]NR

Then, thanks to (3), (X,, ir) is a saddle-point of f, that is
@) + 0 (@) =) = inf (J () + (@00 = 1) = J (i)

+ sup AP —r). )
rela,bINR

First of all, from (4) it follows that %, is a global minimum of J + )ALrCD. We now show
that ®(x,) = r. We distinguish four cases.
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e a = —oo and b = +oo0. In this case, the equality ®(x,) = r follows from the fact that
sup, e A(P(X,) — r) is finite.

e a > —ooand b = +oo0. In this case, the finiteness of sup; c[, 4oof A(P (%) — 1) implies
that ®(x,) < r.But, if ®(x,) < r, from (4), we would infer that Ar =aandso % € M,.
This would imply infy;, ® < r, contrary to the choice of 7.

e a = —ooand b < +00. In this case, the finiteness of sup; ¢)_og A(D(X,) — r) implies
that ®(x,) > r.But,if ®(x,) > r, from (4) again, we would infer A = b,andso £, € M.
Therefore, sup M, @ > r, contrary to the choice of r.

e —00 < aand b < +o0. In this case, if ®(X,) # r, as we have just seen, we would have
either infy, ® < r or supy, ® > r, contrary to the choice of r.

Having proved that ®(x,) = r, we also get that )A\r €la, b[. Indeed, if }A\, € {a, b}, we
would have either X, € M, or X, € M} and so either inf 57, ® < r or sup u, © > r, contrary
to the choice of r. From (4) once again, we furthermore infer that any global minimum of
Jio-1() (and Xy is s0) is a global minimum of J + ):rd> in X. But, since )A»r €la, b[, J + )AL,GD
has exactly one global minimum in X which, therefore, coincides with x,.. Since the sub-level
sets of J + A, @ are sequentlally compact, we then conclude that any minimizing sequence in
X for J 44, ® conyerges to X,.Butany mlmmlzmg sequence in ®~! () for J is a minimizing
sequence for J + A, @, and so it converges to X,. Consequently, the problem of minimizing
J over ®~1(r) is well-posed, as claimed.

Now, let us prove the other assertions made in thesis. By Proposition 1, it clearly follows
that the function A — ®(3;) is non-increasing in Ja, b[ and that its range is contained in
[a, B]. On the other hand, by the first assertion of the thesis, this range contains Jo, B[. Of
course, from this it follows that the function A — ®(3;) is continuous in ]a, b[. Now, observe
that the function A — inf,cx(J(x) + A®(x)) is concave and hence continuous in ]a, b|.
This, in particular, implies that the function A — J(3,) is continuous in ]a, b[. Now, for
each r €]a, B[, put

Ay = {X €la, b[: ®(3;) =r}.

Let us prove that the multifunction » — A, is upper semicontinuous in Je, B[. Of course, it
is enough to show that the restriction of the multifunction to any bounded open sub-interval
of Ja, B[ is upper semicontinuous. So, let s, t €]w, B[, with s < 7. Let i, v €la, b[ be such
that ®(y,) = t, (y,) = 5. By Proposition 1, we have

U ArStuovl

rels,t[

Then, to show that the restriction of multifunction »r — A, to Js, ¢[ is upper semicontinuous,
it is enough to prove that its graph is closed in ]s, f[x[u, v] ([2], Theorem 7.1.16). But,
this latter fact follows immediately from the continuity of the function A — ®(3;). At this
point, we observe that, for each r €]a, B[, the function A — ¥ is constant in A,. Indeed, let
A, € Ay with & £ p. If it was 3; # ¥, by Proposition 1 it would follow

r=0G) # PG =71

an absurd. Hence, the function r — X,, as composition of the upper semicontinuous mul-
tifunction » — A, and the continuous function A — ¥, is continuous. Analogously, the
continuity of the function » — J () follows observing that it is the composition of r — A,
and the continuous function A — J(¥,). The proof is complete. ]

@ Springer



J Glob Optim (2008) 40:389-397 395

Remark 1 We want to point out that, under the assumptions of Theorem 1, we have actually
proved that, for each r €]a, B[, there exists A, €]a, b[ such that the unique global minimum
of J 4 A, ® belongs to dD_l(r).

When a > 0, we can obtain a conclusion dual to that of Theorem 1, under the same key
assumption.

Theorem 3 Leta > 0. Assume that, for each A €]a, bl, the function J + AP has sequentially
compact sub-level sets and admits a unique global minimum in X.

Set
y: = max [inf J, sup J],
X i,
8: =min §supJ,inf J ¢,
X Mb
where

Mh:[MaJa>Q

9 ifa=0,
M_ My, l:fb<+OO,
b= 1o l(infyx ®) if b= +oo.

Assume that y < 8.

Then, for each r €y, 8], the problem of minimizing ® over J~'(r) is well-posed.

Moreover, if we denote by X, the unique global minimum of ® ;-1 (r €ly,$l), the
functions r — X, and r — ®(X,) are continuous in ly, 8[.

Proof Let n €lb~!, a~![. Then, since //,_1 €la, b[ and

D+ pud =pnlJ +/L_1d>)

we clearly have that the function ® 4 1+ J has sequentially compact sub-level sets and admits
a unique global minimum. At this point, the conclusion follows applying Theorem 1 with
the roles of J an & interchanged. O

We now state the version of Theorem 1 obtained in the setting of a reflexive Banach space
endowed with the weak topology.

Theorem 4 Let X be a sequentially weakly closed set in a reflexive real Banach space.
Assume that « < 8 and that, for each ) €]a, b|, the function J + L ® is sequentially weakly
lower semicontinuous, has bounded sub-level sets and has a unique global minimum in X.
Then, for each r €la, B, the problem of minimizing J over ®~'(r) is well-posed in the
weak topology.
Moreover, if we denote by X, the unique global minimum of Jio-14y (r €le, BD), the
Sfunctions r — X, andr — J(X,) are continuous in lo, B[, the first one in the weak topology.
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Proof Our assumptions clearly imply that, for each A €]a, b[, the sub-level sets of J +A® are
sequentially weakly compact, by the Eberlein—-Smulyan theorem. Hence, considering X with
the relative weak topology, we are allowed to apply Theorem 1, from which the conclusion
directly follows. O

Analogously, from Theorem 3 we get

Theorem S Let a > 0 and let X be a sequentially weakly closed set in a reflexive real
Banach space. Assume that, for each A €la, b|, the function J + A® is sequentially weakly
lower semicontinuous, has bounded sub-level sets and has a unique global minimum in X.
Assume also that y < 8, where y, § are defined as in Theorem 3.

Then, for each r €ly, 8], the problem of minimizing ® over J~(r) is well-posed in the
weak topology.

Moreover, if we denote by X, the unique global minimum of ® ;-1 (r €ly,3l), the
functions r — X, andr — ®(X,) are continuous in |y, 8, the first one in the weak topology.

Finally, it is worth noticing that Theorem 1 also offers the perspective of a novel way of
seeing whether a given function possesses a global minimum. Let us formalize this using
Remark 1.

Theorem 6 Assume that b > 0 and that, for each ) €]0, b, the function J + A has
sequentially compact sub-level sets and admits a unique global minimum, say y;. Assume
also that

lim ®(y;) < sup ®. ®)
A—0t X
Then, one has
lim ®(y;) = inf ®,
A—>07F M
where M is the set of all global minima of J in X.

Proof We already know that the function & — ®(3;) is non-increasing in ]a, b[ and that its
range is contained in [«, B]. We claim that

B = lim ®(5y).
A—>07F

Assume the contrary. Let us apply Theorem 1, with a = 0 (so, My = M), using the
conclusion pointed out in Remark 1. Choose r satisfying

lim ®(3) <r < B.
A—>0t

Then, (since also @ < r) it would exist ir €]0, b[ such that d>(§)ir) = r, contrary to the
choice of r. At this point, the conclusion follows directly from (5). m}
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