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Abstract In this paper, it is proved a very general well-posedness result for a class of
constrained minimization problems of which the following is a particular case: Let X be a
Hausdorff topological space and let J,�: X → R be two non-constant functions such that, for
each λ ∈ R, the function J +λ� has sequentially compact sub-level sets and admits a unique
global minimum in X . Then, for each r ∈] inf X �, supX �[, the restriction of J to �−1(r)

has a unique global minimum, say x̂r , toward which every minimizing sequence converges.
Moreover, the functions r → x̂r and r → J (x̂r ) are continuous in ] inf X �, supX �[.

Keywords Constrained minimization problem · Well-posedness · Minimax · Saddle-point

Here and in the sequel, X is a Hausdorff topological space, J,� are two real-valued functions
defined in X , and a, b are two numbers in [−∞,+∞], with a < b.

If a ∈ R (resp. b ∈ R), we denote by Ma (resp. Mb) the set of all global minima of the
function J + a� (resp. J + b�), while if a = −∞ (resp. b = +∞), Ma (resp. Mb) stands
for the empty set. We adopt the conventions inf ∅ = +∞, sup ∅ = −∞. We also set

α := max

{
inf
X

�, sup
Mb

�

}
,

β := min

{
sup

X
�, inf

Ma
�

}
.

Note that, by Proposition 1 below, one has α ≤ β.
As usual, given a function f : X → R and a set C ⊆ X , we say that the problem of

minimizing f over C is well-posed if the following two conditions hold:
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• the restriction of f to C has a unique global minimum, say x̂ ;
• every sequence {xn} in C such that limn→∞ f (xn) = infC f , converges to x̂ .

A set of the type {x ∈ X : f (x) ≤ r} is said to be a sub-level set of f . Clearly, when the
sub-level sets of f are sequentially compact, the problem of minimizing f over a sequentially
closed set C is well-posed if and only if f|C has a unique global minimum.

The aim of the present paper is to establish the following result:

Theorem 1 Assume that α < β and that, for each λ ∈]a, b[, the function J + λ� has
sequentially compact sub-level sets and admits a unique global minimum in X.

Then, for each r ∈]α, β[, the problem of minimizing J over �−1(r) is well-posed.
Moreover, if we denote by x̂r the unique global minimum of J|�−1(r)(r ∈]α, β[), the func-

tions r → x̂r and r → J (x̂r ) are continuous in ]α, β[.
Theorem 1 should be regarded as the definitive abstract result coming out from the sad-

dle-point method developed in Refs. [4–7], in specific settings.
The main tool used to prove Theorem 1 is provided by the following mini–max result:

Theorem 2 Let I ⊆ R be an interval and f a real-valued function defined in X × I . Assume
that there exist a number ρ∗ > supI inf X f and a point λ̂ ∈ I such that, for each ρ ≤ ρ∗,
the following conditions hold:

(i) the set {λ ∈ I : f (x, λ) > ρ} is connected for all x ∈ X;
(ii) the set {x ∈ X : f (x, λ) ≤ ρ} is sequentially closed for all λ ∈ I and sequentially

compact for λ = λ̂ ;
(iii) for each compact interval T ⊆ I for which supT inf X f < ρ, there exists a continuous

function ϕ: T → X such that f (ϕ(λ), λ) < ρ for all λ ∈ T .
Then, one has

sup
λ∈I

inf
x∈X

f (x, λ) = inf
x∈X

sup
λ∈I

f (x, λ).

Proof We strictly follow the proof of Theorem 2 of [3]. First, fix a non-decreasing sequence
{In} of compact sub-intervals of I , with λ̂ ∈ I1, such that ∪n∈N In = I . Now, fix n ∈ N. We
claim that

sup
λ∈In

inf
x∈X

f (x, λ) = inf
x∈X

sup
λ∈In

f (x, λ). (1)

Arguing by contradiction, suppose that

sup
λ∈In

inf
x∈X

f (x, λ) < inf
x∈X

sup
λ∈In

f (x, λ).

Fix ρ satisfying

sup
λ∈In

inf
x∈X

f (x, λ) < ρ < min

{
ρ∗, inf

x∈X
sup
λ∈In

f (x, λ)

}
.

Set

S = {(x, λ) ∈ X × In : f (x, λ) < ρ}
as well as, for each λ ∈ In ,

Sλ = {x ∈ X : (x, λ) ∈ S}.
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Since supIn
inf X f < ρ, one has Sλ 	= ∅ for all λ ∈ In . Let In = [an, bn]. Put

A =
{

(x, λ) ∈ S: λ < bn , sup
s∈]λ,bn ]

f (x, s) > ρ

}

and

B =
{

(x, λ) ∈ S: λ > an , sup
s∈[an ,λ[

f (x, s) > ρ

}
.

Observe that San × {an} ⊆ A and Sbn × {bn} ⊆ B. Indeed, let x1 ∈ San and x2 ∈ Sbn .
Since ρ < inf X supIn

f , there are t, s ∈ In such that min{ f (x1, t), f (x2, s)} > ρ. Since
sup{ f (x1, an), f (x2, bn)} < ρ, it follows that t > an and s < bn . Consequently, (x1, an) ∈ A
and (x2, bn) ∈ B. Furthermore, observe that if (x0, λ0) ∈ A and if µ ∈]λ0, bn] is such that
f (x0, µ) > ρ, then, in view of (i i), the set

({x ∈ X : f (x, µ) > ρ} × [an, µ[) ∩ S

is sequentially open in S, contains (x0, λ0) and is contained in A. In other words, A is
sequentially open in S. Analogously, it is seen that B is sequentially open in S. We now
prove that S = A ∪ B. Indeed, let (x, λ) ∈ S \ A. We have seen above that San × {an} ⊆ A,
and so λ > an . If λ = bn , the fact that (x, λ) ∈ B has been likewise proved above. Sup-
pose λ < bn . Thus, we have sups∈]λ,bn ] f (x, s) ≤ ρ. From this, it clearly follows that
sups∈[an ,λ[ f (x, s) > ρ (note that f (x, λ) < ρ), and so (x, λ) ∈ B. Furthermore, we have
A ∩ B = ∅. Indeed, if (x1, λ1) ∈ A ∩ B, there would be t1, s1 ∈ In , with t1 < λ1 < s1, such
that min{ f (x1, t1), f (x1, s1)} > ρ. By (i), the set {s ∈ I : f (x1, s) > ρ} is an interval, and
so we would have f (x1, λ1) > ρ, against the fact that (x1, λ1) ∈ S. Now, in view of (i i i),
consider a continuous function ϕ: In → X such that

f (ϕ(λ), λ) < ρ

for all λ ∈ In . Let h: In → X × In be defined by setting

h(λ) = (ϕ(λ), λ)

for all λ ∈ In . Since h is continuous, the set h(In) is sequentially connected ([1], Theorem
2.2). But, having in mind that h(In) ⊆ S and that h(In) meets both A and B (since h(an) ∈ A
and h(bn) ∈ B), the properties of A, B proved above would imply that h(In) is sequentially
disconnected, a contradiction. So, (1) holds. Finally, let us prove the theorem. Again arguing
by contradiction, suppose that

sup
λ∈I

inf
x∈X

f (x, λ) < inf
x∈X

sup
λ∈I

f (x, λ).

Choose r satisfying

sup
λ∈I

inf
x∈X

f (x, λ) < r < min

{
ρ∗, inf

x∈X
sup
λ∈I

f (x, λ)

}
.

For each n ∈ N, put

Cn =
{

x ∈ X : sup
λ∈In

f (x, λ) ≤ r

}
.
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Note that Cn 	= ∅. Indeed, otherwise, we would have

r ≤ inf
x∈X

sup
λ∈In

f (x, λ) = sup
λ∈In

inf
x∈X

f (x, λ) ≤ sup
λ∈I

inf
x∈X

f (x, λ).

Consequently, {Cn} is a non-increasing sequence of non-empty sequentially closed subsets
of the sequentially compact set {x ∈ X : f (x, λ̂) ≤ ρ∗}. Therefore, one has ∩n∈NCn 	= ∅.
Let x∗ ∈ ∩n∈NCn . Then, one has

sup
λ∈I

f (x∗, λ) = sup
n∈N

sup
λ∈In

f (x∗, λ) ≤ r

and so

inf
x∈X

sup
λ∈I

f (x, λ) ≤ r,

a contradiction. The proof is complete. ��
We will also use the following proposition.

Proposition 1 ([4], Proposition 1) Let Y be a non-empty set, f, g: Y → R two functions,
and λ,µ two real numbers, with λ < µ. Let ŷλ be a global minimum of the function f + λg
and let ŷµ be a global minimum of the function f + µg.

Then, one has

g(ŷµ) ≤ g(ŷλ).

If either ŷλ or ŷµ is strict and ŷλ 	= ŷµ, then

g(ŷµ) < g(ŷλ).

Proof of Theorem 1 First, for each λ ∈]a, b[, denote by ŷλ the unique global minimum in
X of J + λ�. Let us prove that the function λ → ŷλ is continuous in ]a, b[. To this end,
fix λ∗ ∈]a, b[. Let {λn} be any sequence in ]a, b[ converging to λ∗ and let [c, d] ⊂]a, b[ be
a compact interval containing {λn}. Fix ρ > supn∈N infx∈X (J (x) + λn�(x)). Clearly, we
have ⋃

λ∈[c,d]
{x ∈ X : J (x) + λ�(x) ≤ ρ}

⊆ {x ∈ X : J (x) + c�(x) ≤ ρ} ∪ {x ∈ X : J (x) + d�(x) ≤ ρ}.
From this, due to the choice of ρ, we infer that the sequence {ŷλn } is contained in the set on the
right-hand side which is clearly sequentially compact. Hence, there is a subsequence {ŷλnk

}
converging to some y∗ ∈ X . Taking into account that the sequence {�(ŷλnk

)} is bounded (by
Proposition 1) and that the function J + λ∗� is sequentially lower semicontinuous, for each
x ∈ X , we then have

J (y∗) + λ∗�(y∗) ≤ lim inf
k→∞ (J (ŷλnk

) + λ∗�(ŷλnk
))

= lim inf
k→∞ (J (ŷλnk

) + λnk �(ŷλnk
) + (λ∗ − λnk )�(ŷλnk

))

= lim inf
k→∞ (J (ŷλnk

) + λnk �(ŷλnk
)) ≤ lim

k→∞(J (x) + λnk �(x))

= J (x) + λ∗�(x)
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Hence y∗ is the global minimum of J + λ∗�, that is y∗ = ŷλ∗ , which shows the continuity
of λ → ŷλ at λ∗. Now, fix r ∈]α, β[ and consider the function f : X × R → R defined by

f (x, λ) = J (x) + λ(�(x) − r)

for all (x, λ) ∈ X × R. Clearly, the restriction of the function f to X×]a, b[ satisfies all the
assumptions of Theorem 2. In particular, (i i i) is satisfied taking ϕ(λ) = ŷλ. Consequently,
we have

sup
λ∈]a,b[

inf
x∈X

(J (x) + λ(�(x) − r)) = inf
x∈X

sup
λ∈]a,b[

(J (x) + λ(�(x) − r)). (2)

Note that

sup
λ∈]a,b[

inf
x∈X

f (x, λ) ≤ sup
λ∈[a,b]∩R

inf
x∈X

f (x, λ)

≤ inf
x∈X

sup
λ∈[a,b]∩R

f (x, λ) = inf
x∈X

sup
λ∈]a,b[

f (x, λ)

and so from (2) it follows

sup
λ∈[a,b]∩R

inf
x∈X

(J (x) + λ(�(x) − r)) = inf
x∈X

sup
λ∈[a,b]∩R

(J (x) + λ(�(x) − r)). (3)

Now, observe that the function infx∈X f (x, ·) is upper semicontinuous in [a, b] ∩ R and
that

lim
λ→+∞ inf

x∈X
f (x, λ) = −∞

if b = +∞ (since r > inf X �), and

lim
λ→−∞ inf

x∈X
f (x, λ) = −∞

if a = −∞ (since r < supX �). From this, it clearly follows that there exists λ̂r ∈ [a, b]∩R

such that

inf
x∈X

f (x, λ̂r ) = sup
λ∈[a,b]∩R

inf
x∈X

f (x, λ).

Since

sup
λ∈[a,b]∩R

f (x, λ) = sup
λ∈]a,b[

f (x, λ)

for all x ∈ X , the sub-level sets of the function supλ∈[a,b]∩R
f (·, λ) are sequentially compact.

Hence, there exists x̂r ∈ X such that

sup
λ∈[a,b]∩R

f (x̂r , λ) = inf
x∈X

sup
λ∈[a,b]∩R

f (x, λ).

Then, thanks to (3), (x̂r , λ̂r ) is a saddle-point of f , that is

J (x̂r ) + λ̂r (�(x̂r ) − r) = inf
x∈X

(J (x) + λ̂r (�(x) − r)) = J (x̂r )

+ sup
λ∈[a,b]∩R

λ(�(x̂r ) − r). (4)

First of all, from (4) it follows that x̂r is a global minimum of J + λ̂r�. We now show
that �(x̂r ) = r . We distinguish four cases.
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• a = −∞ and b = +∞. In this case, the equality �(x̂r ) = r follows from the fact that
supλ∈R

λ(�(x̂r ) − r) is finite.
• a > −∞ and b = +∞. In this case, the finiteness of supλ∈[a,+∞[ λ(�(x̂r ) − r) implies

that �(x̂r ) ≤ r . But, if �(x̂r ) < r , from (4), we would infer that λ̂r = a and so x̂r ∈ Ma .
This would imply inf Ma � < r , contrary to the choice of r .

• a = −∞ and b < +∞. In this case, the finiteness of supλ∈]−∞,b] λ(�(x̂r ) − r) implies

that �(x̂r ) ≥ r . But, if �(x̂r ) > r , from (4) again, we would infer λ̂r = b, and so x̂r ∈ Mb.
Therefore, supMb

� > r , contrary to the choice of r .
• −∞ < a and b < +∞. In this case, if �(x̂r ) 	= r , as we have just seen, we would have

either inf Ma � < r or supMb
� > r , contrary to the choice of r .

Having proved that �(x̂r ) = r , we also get that λ̂r ∈]a, b[. Indeed, if λ̂r ∈ {a, b}, we
would have either x̂r ∈ Ma or x̂r ∈ Mb and so either inf Ma � ≤ r or supMb

� ≥ r , contrary
to the choice of r . From (4) once again, we furthermore infer that any global minimum of
J|�−1(r) (and x̂r is so) is a global minimum of J + λ̂r� in X . But, since λ̂r ∈]a, b[, J + λ̂r�

has exactly one global minimum in X which, therefore, coincides with x̂r . Since the sub-level
sets of J + λ̂r� are sequentially compact, we then conclude that any minimizing sequence in
X for J +λ̂r� converges to x̂r . But any minimizing sequence in �−1(r) for J is a minimizing
sequence for J + λ̂r�, and so it converges to x̂r . Consequently, the problem of minimizing
J over �−1(r) is well-posed, as claimed.

Now, let us prove the other assertions made in thesis. By Proposition 1, it clearly follows
that the function λ → �(ŷλ) is non-increasing in ]a, b[ and that its range is contained in
[α, β]. On the other hand, by the first assertion of the thesis, this range contains ]α, β[. Of
course, from this it follows that the function λ → �(ŷλ) is continuous in ]a, b[. Now, observe
that the function λ → inf x∈X (J (x) + λ�(x)) is concave and hence continuous in ]a, b[.
This, in particular, implies that the function λ → J (ŷλ) is continuous in ]a, b[. Now, for
each r ∈]α, β[, put

�r = {λ ∈]a, b[: �(ŷλ) = r}.
Let us prove that the multifunction r → �r is upper semicontinuous in ]α, β[. Of course, it
is enough to show that the restriction of the multifunction to any bounded open sub-interval
of ]α, β[ is upper semicontinuous. So, let s, t ∈]α, β[, with s < t . Let µ, ν ∈]a, b[ be such
that �(ŷµ) = t , �(ŷν) = s. By Proposition 1, we have⋃

r∈]s,t[
�r ⊆ [µ, ν].

Then, to show that the restriction of multifunction r → �r to ]s, t[ is upper semicontinuous,
it is enough to prove that its graph is closed in ]s, t[×[µ, ν] ([2], Theorem 7.1.16). But,
this latter fact follows immediately from the continuity of the function λ → �(ŷλ). At this
point, we observe that, for each r ∈]α, β[, the function λ → ŷλ is constant in �r . Indeed, let
λ,µ ∈ �r with λ 	= µ. If it was ŷλ 	= ŷµ, by Proposition 1 it would follow

r = �(ŷλ) 	= �(ŷµ) = r

an absurd. Hence, the function r → x̂r , as composition of the upper semicontinuous mul-
tifunction r → �r and the continuous function λ → ŷλ, is continuous. Analogously, the
continuity of the function r → J (x̂r ) follows observing that it is the composition of r → �r

and the continuous function λ → J (ŷλ). The proof is complete. ��
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Remark 1 We want to point out that, under the assumptions of Theorem 1, we have actually
proved that, for each r ∈]α, β[, there exists λ̂r ∈]a, b[ such that the unique global minimum
of J + λ̂r� belongs to �−1(r).

When a ≥ 0, we can obtain a conclusion dual to that of Theorem 1, under the same key
assumption.

Theorem 3 Let a ≥ 0. Assume that, for each λ ∈]a, b[, the function J +λ� has sequentially
compact sub-level sets and admits a unique global minimum in X.

Set

γ : = max

{
inf
X

J, sup
M̂a

J

}
,

δ: = min

{
sup

X
J, inf

M̂b

J

}
,

where

M̂a =
{

Ma if a > 0,

∅ if a = 0,

M̂b =
{

Mb if b < +∞,

�−1(inf X �) if b = +∞.

Assume that γ < δ.
Then, for each r ∈]γ, δ[, the problem of minimizing � over J−1(r) is well-posed.
Moreover, if we denote by x̃r the unique global minimum of �|J−1(r)(r ∈]γ, δ[), the

functions r → x̃r and r → �(x̃r ) are continuous in ]γ, δ[.

Proof Let µ ∈]b−1, a−1[. Then, since µ−1 ∈]a, b[ and

� + µJ = µ(J + µ−1�)

we clearly have that the function �+µJ has sequentially compact sub-level sets and admits
a unique global minimum. At this point, the conclusion follows applying Theorem 1 with
the roles of J an � interchanged. ��

We now state the version of Theorem 1 obtained in the setting of a reflexive Banach space
endowed with the weak topology.

Theorem 4 Let X be a sequentially weakly closed set in a reflexive real Banach space.
Assume that α < β and that, for each λ ∈]a, b[, the function J + λ� is sequentially weakly
lower semicontinuous, has bounded sub-level sets and has a unique global minimum in X.

Then, for each r ∈]α, β[, the problem of minimizing J over �−1(r) is well-posed in the
weak topology.

Moreover, if we denote by x̂r the unique global minimum of J|�−1(r) (r ∈]α, β[), the
functions r → x̂r and r → J (x̂r ) are continuous in ]α, β[, the first one in the weak topology.
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Proof Our assumptions clearly imply that, for each λ ∈]a, b[, the sub-level sets of J +λ� are
sequentially weakly compact, by the Eberlein–Smulyan theorem. Hence, considering X with
the relative weak topology, we are allowed to apply Theorem 1, from which the conclusion
directly follows. ��
Analogously, from Theorem 3 we get

Theorem 5 Let a ≥ 0 and let X be a sequentially weakly closed set in a reflexive real
Banach space. Assume that, for each λ ∈]a, b[, the function J + λ� is sequentially weakly
lower semicontinuous, has bounded sub-level sets and has a unique global minimum in X.
Assume also that γ < δ, where γ, δ are defined as in Theorem 3.

Then, for each r ∈]γ, δ[, the problem of minimizing � over J−1(r) is well-posed in the
weak topology.

Moreover, if we denote by x̃r the unique global minimum of �|J−1(r) (r ∈]γ, δ[), the
functions r → x̃r and r → �(x̃r ) are continuous in ]γ, δ[, the first one in the weak topology.

Finally, it is worth noticing that Theorem 1 also offers the perspective of a novel way of
seeing whether a given function possesses a global minimum. Let us formalize this using
Remark 1.

Theorem 6 Assume that b > 0 and that, for each λ ∈]0, b[, the function J + λ� has
sequentially compact sub-level sets and admits a unique global minimum, say ŷλ. Assume
also that

lim
λ→0+ �(ŷλ) < sup

X
�. (5)

Then, one has

lim
λ→0+ �(ŷλ) = inf

M
�,

where M is the set of all global minima of J in X.

Proof We already know that the function λ → �(ŷλ) is non-increasing in ]a, b[ and that its
range is contained in [α, β]. We claim that

β = lim
λ→0+ �(ŷλ).

Assume the contrary. Let us apply Theorem 1, with a = 0 (so, M0 = M), using the
conclusion pointed out in Remark 1. Choose r satisfying

lim
λ→0+ �(ŷλ) < r < β.

Then, (since also α < r ) it would exist λ̂r ∈]0, b[ such that �(ŷ
λ̂r

) = r , contrary to the
choice of r . At this point, the conclusion follows directly from (5). ��
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